- irreducible system
- мат.неприводимая система
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Irreducible complexity — This article covers irreducible complexity as used by those who argue for intelligent design. For information on irreducible complexity as used in Systems Theory, see Irreducible complexity (Emergence). Irreducible complexity (IC) is an argument… … Wikipedia
System of imprimitivity — The concept of system of imprimitivity is used in mathematics, particularly in algebra and analysis, both within the context of the theory of group representations. It was used by George Mackey as the basis for his theory of induced unitary… … Wikipedia
irreducible complexity — noun the minimal amount of complexity a biological system may exhibit while still maintaining its primary function … Wiktionary
Root system — This article discusses root systems in mathematics. For root systems of plants, see root. Lie groups … Wikipedia
Abstract rewriting system — In mathematical logic and theoretical computer science, an abstract rewriting system (also (abstract) reduction system or abstract rewrite system; abbreviation ARS) is a formalism that captures the quintessential notion and properties of… … Wikipedia
Irreduzibel komplexes System — Nichtreduzierbare Komplexität (oder irreduzible Komplexität) ist ein von Michael Behe benanntes Konzept, mit dem er versucht, Intelligent Design zu stützen. Er definiert ein irreduzibel komplexes System als „ein einzelnes System, das aus mehreren … Deutsch Wikipedia
Fermat (computer algebra system) — Infobox Software name = Fermat caption = developer = Robert H. Lewis latest release version = 3.9.7 latest release date = May 6 2008 programming language = C operating system = Mac OS X, Mac OS, Linux, Unix, Windows genre = Computer algebra… … Wikipedia
Michael Behe — Michael J. Behe Born January 18, 1952 (1952 01 18) (age 59) … Wikipedia
Intelligent design — This article is about intelligent design as promulgated by the Discovery Institute. For other uses, see Intelligent design (disambiguation). For the philosophical argument from design , see Teleological argument … Wikipedia
Deligne–Lusztig theory — In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ adic cohomology with compact support, introduced by Deligne Lusztig (1976). Lusztig (1984) used these representations to… … Wikipedia
Darwin's Black Box — … Wikipedia